Phylogenetic characterization and screening of halophilic bacteria from Algerian salt lake for the production of biosurfactant and enzymes

Lenchi Nesrine, Kebbouche Salima, Khelfaoui Mohamed Lamine, Laddada Belaid, bKhemili Souad, Gana Mohamed Lamine, Akmoussi Sihem, Ferioune Imène


Environments containing significant concentration of NaCl such as salt lakes harbor extremophiles microorganisms which have a great biotechnology interest. To explore the diversity of Bacteria in Chott Tinsilt (Algeria), an isolation program was performed. Water samples were collected from the saltern during the pre-salt harvesting phase. This Chott is high in salt (22.47% (w/v). Seven halophiles Bacteria were selected for further characterization. The isolated strains were able to grow optimally in media with 10–25% (w/v) total salts. Molecular identification of the isolates was performed by sequencing the 16S rRNA gene. It showed that these cultured isolates included members belonging to the Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus genera with less than 98% of similarity with their closest phylogenetic relative.  The halophilic bacterial isolates were also characterized for the production of biosurfactant and industrially important enzymes. Most isolates produced hydrolases and biosurfactants at high salt concentration. In fact, this is the first report on bacterial strains (A4 and B4) which were a good biosurfactant and coagulase producer at 20% and 25% ((w/v)) NaCl. In addition, the biosurfactant produced by the strain B4 at high salinity (25%) was also stable at high temperature (30-100°C) and high alkalinity (pH 11).

Key word: Salt Lake, Bacteria, biosurfactant, Chott, halophiles, hydrolases, 16S rRNA


Saline lakes cover approximately 10% of the Earth’s surface area. The microbial populations of many hypersaline environments have already been studied in different geographical regions such as Great Salt Lake (USA), Dead Sea (Israel), Wadi Natrun Lake (Egypt), Lake Magadi (Kenya), Soda Lake (Antarctica) and Big Soda Lake and Mono Lake (California). Hypersaline regions differ from each other in terms of geographical location, salt concentration and chemical composition, which determine the nature of inhabitant microorganisms (Gupta et al., 2015).  Then low taxonomic diversity is common to all these saline environments (Oren et al., 1993). Halophiles are found in nearly all major microbial clades, including prokaryotic (Bacteria and Archaea) and eukaryotic forms (DasSarma and Arora, 2001). They are classified as slight halophiles when they grow optimally at 0.2–0.85 (2–5%) NaCl, as moderate halophiles when they grow at 0.85–3.4 (5–20%) NaCl, and as extreme halophiles when they grow at 3.4–5.1 (20–30%) NaCl. Hyper saline environments are inhabited by extremely halophilic and halotolerant microorganisms such as Halobacillus spHalobacterium sp., Haloarcula  sp., Salinibacter ruber , Haloferax  sp and Bacillus  spp(Solomon and Viswalingam, 2013). There is a tremendous demand for halophilic bacteria due to their biotechnological importance as sources of halophilic enzymes. Enzymes derived from halophiles are endowed with unique structural features and catalytic power to sustain the metabolic and physiological processes under high salt conditions. Some of these enzymes have been reported to be active and stable under more than one extreme condition (Karan and Khare, 2010). Applications are being considered in a range of industries such as food processing, washing, biosynthetic processes and environmental bioremediation. Halophilic proteases are widely used in the detergent and food industries (DasSarma and Arora, 2001). However, esterases and lipases have also been useful in laundry detergents for the removal of oil stains and are widely used as biocatalysts because of their ability to produce pure compounds. Likewise, amylases are used industrially in the first step of the production of high fructose corn syrup (hydrolysis of corn starch). They are also used in the textile industry in the de-sizing process and added to laundry detergents. Furthermore, for the environmental applications, the use of halophiles for bioremediation and biodegradation of various materials from industrial effluents to soil contaminants and accidental spills are being widely explored. In addition to enzymes, halophilic / halotolerants microorganisms living in saline environments, offer another potential applications in various fields of biotechnology like the production of biosurfactant. Biosurfactants are amphiphilic compounds synthesized from plants and microorganisms. They reduce surface tension and interfacial tension between individual molecules at the surface and interface respectively (Akbari et al., 2018). Comparing to the chemical surfactant, biosurfactant are promising alternative molecules due to their low toxicity, high biodegradability, environmental capability, mild production conditions, lower critical micelle concentration, higher selectivity, availability of resources and ability to function in wide ranges of pH, temperature and salinity (Rocha et al., 1992). They are used in various industries which include pharmaceuticals, petroleum, food, detergents, cosmetics, paints, paper products and water treatment (Akbari et al., 2018). The search for biosurfactants in extremophiles is particularly promising since these biomolecules can adapt and be stable in the harsh environments in which they are to be applied in biotechnology.


Eastern Algeria features numerous ecosystems including hypersaline environments, which are an important source of salt for food. The microbial diversity in Chott Tinsilt, a shallow Salt Lake with more than 200g/L salt concentration and a superficies of 2.154 Ha, has never yet been studied. The purpose of this research was to chemically analyse water samples collected from the Chott, isolate novel extremely or moderate halophilic Bacteria, and examine their phenotypic and phylogenetic characteristics with a view to screening for biosurfactants and enzymes of industrial interest.


Study area: The area is at 5 km of the Commune of Souk-Naâmane and 17 km in the South of the town of Aïn-Melila. This area skirts the trunk road 3 serving Constantine and Batna and the railway Constantine-Biskra.  It is part the administrative jurisdiction of the Wilaya of Oum El Bouaghi. The Chott belongs to the wetlands of the High Plains of Constantine with a depth varying rather regularly without never exceeding 0.5 meter.  Its length extends on 4 km with a width of 2.5 km (figure 1).

Water samples and physico-chemical analysis: In February 2013, water samples were collected from various places at the Chott Tinsilt using Global Positioning System (GPS) coordinates of 35°53’14” N lat. and 06°28’44”E long. Samples were collected randomly in sterile polythene bags and transported immediately to the laboratory for isolation of halophilic microorganisms. All samples were treated within 24 h after collection.  Temperature, pH and salinity were measured in situ using a multi-parameter probe (Hanna Instruments, Smithfield, RI, USA). The analytical methods used in this study to measure ions concentration (Ca2+, Mg2+, Fe2+, Na+, K+, Cl, HCO3, SO42−) were based on 4500-S-2 F standard methods described elsewhere (Association et al., 1920).

Isolation of halophilic bacteria from water sample: The media (M1) used in the present study contain (g/L): 2.0 g of KCl, 100.0/200.0 g of NaCl, 1.0 g of MgSO4.7HO2, 3.0 g of Sodium Citrate, 0.36 g of MnCl2, 10.0 g of yeast extract and 15.0 g agar. The pH was adjusted to 8.0. Different dilutions of water samples were added to the above medium and incubated at 30°C during 2–7 days or more depending on growth. Appearance and growth of halophilic bacteria were monitored regularly. The growth was diluted 10 times and plated on complete medium agar (g/L): glucose 10.0; peptone 5.0; yeast extract 5.0; KH2PO4 5.0; agar 30.0; and NaCl 100.0/200.0. Resultant colonies were purified by repeated streaking on complete media agar. The pure cultures were preserved in 20% glycerol vials and stored at −80°C for long-term preservation.

Biochemical characterisation of halophilic bacterial isolates: Bacterial isolates were studied for Gram’s reaction, cell morphology and pigmentation. Enzymatic assays (catalase, oxidase, nitrate reductase and urease), and assays for fermentation of lactose and mannitol were done as described by Smibert (1994).

Optimization of growth conditions: Temperature, pH, and salt concentration were optimized for the growth of halophilic bacterial isolates. These growth parameters were studied quantitatively by growing the bacterial isolates in M1 medium with shaking at 200 rpm and measuring the cell density at 600 nm after 8 days of incubation. To study the effect of NaCl on the growth, bacterial isolates were inoculated on M1 medium supplemented with different concentration of NaCl: 1%-35% (w/v). The effect of pH on the growth of halophilic bacterial strains was studied by inoculating isolates on above described growth media containing NaCl and adjusted to acidic pH of 5 and 6 by using 1N HCl and alkaline pH of 8, 9, 10, 11 and 12 using 5N NaOH. The effect of temperature was studied by culturing the bacterial isolates in M1 medium at different temperatures of incubation (4°C–55°C).

Screening of halophilic bacteria for hydrolytic enzymes: Hydrolase producing bacteria among the isolates were screened by plate assay on starch, tributyrin, gelatin and DNA agar plates respectively for amylase, lipase, protease and DNAse activities. Amylolytic activity of the cultures was screened on starch nutrient agar plates containing g/L: starch 10.0; peptone 5.0; yeast extract 3.0; agar 30.0; NaCl 100.0/250.0. The pH was 7.0. After incubation at 30 ºC for 7 days, the zone of clearance was determined by flooding the plates with iodine solution. The potential amylase producers were selected based on ratio of zone of clearance diameter to colony diameter. Lipase activity of the cultures was screened on tributyrin nutrient agar plates containing 1% (v/v) of tributyrin. Isolates that showed clear zones of tributyrin hydrolysis were identified as lipase producing bacteria. Proteolytic activity of the isolates was similarly screened on gelatin nutrient agar plates containing 10.0 g/L of gelatin. The isolates showing zones of gelatin clearance upon treatment with acidic mercuric chloride were selected and designated as protease producing bacteria.  The presence of DNAse activity on plates was determined on DNAse test agar (BBL) containing 10%-25% (w/v) total salt. After incubation for 7days, the plates were flooded with 1N HCl solution. Clear halos around the colonies indicated DNAse activity (Jeffries et al., 1957).

Milk clotting activity (coagulase activity) of the isolates was also determined following the procedure described (Berridge, 1952). Skim milk powder was reconstituted in 10 mM aqueous CaCl2 (pH 6.5) to a final concentration of 0.12 kg/L. Enzyme extracts were added at a rate of 0.1 mL per mL of milk. The coagulation point was determined by manual rotating of the test tube periodically, at short time intervals, and checking for visible clot formation.

Screening of halophilic bacteria for biosurfactant production. Oil spread Assay: The Petridis base was filled with 50 mL of distilled water. On the water surface, 20μL of diesel and 10μl of culture were added respectively. The culture was introduced at different spots on the diesel, which is coated on the water surface. The occurrence of a clear zone was an indicator of positive result (Morikawa et al., 2000). The diameter of the oil expelling circles was measured by slide caliber (with a degree of accuracy of 0.02 mm).

Surface tension and emulsification index (E24): Isolates were cultivated at 30 °C for 7 days on the enrichment medium containing 10-25% NaCl and diesel oil as the sole carbon source. The medium was centrifuged (7000 rpm for 20 min) and the surface tension of the cell-free culture broth was measured with a TS90000 surface tensiometer (Nima, Coventry, England) as a qualitative indicator of biosurfactant production. The culture broth was collected with a Pasteur pipette to remove the non-emulsified hydrocarbons. The emulsifying capacity was evaluated by an emulsification index (E24). The E24 of culture samples was determined by adding 2 mL of diesel oil to the same amount of culture, mixed for 2 min with a vortex, and allowed to stand for 24 h. E24 index is defined as the percentage of height of emulsified layer (mm) divided by the total height of the liquid column (mm).

Biosurfactant stability studies : After growth on diesel oil as sole source of carbone, cultures supernatant obtained after centrifugation at 6,000 rpm for 15 min were considered as the source of crude biosurfactant. Its stability was determined by subjecting the culture supernatant to various temperature ranges (30, 40, 50, 60, 70, 80 and 100 °C) for 30 min then cooled to room temperature. Similarly, the effect of different pH (2–11) on the activity of the biosurfactant was tested. The activity of the biosurfactant was investigated by measuring the emulsification index (El-Sersy, 2012).

Molecular identification of potential strains. DNA extraction and PCR amplification of 16S rDNA: Total cellular DNA was extracted from strains and purified as described by Sambrook et al. (1989). DNA was purified using Geneclean® Turbo (Q-BIO gene, Carlsbad, CA, USA) before use as a template in polymerase chain reaction (PCR) amplification. For the 16S rDNA gene sequence, the purified DNA was amplified using a universal primer set, forward primer (27f; 5′-AGA GTT TGA TCM  TGG CTC AG) and a reverse primer (1492r; 5′-TAC GGY TAC CTT  GTT ACG ACT T) (Lane, 1991). Agarose gel electrophoresis confirmed the amplification product as a 1400-bp DNA fragment.

16S rDNA sequencing and Phylogenic analysis: Amplicons generated using primer pair 27f-1492r was sequenced using an automatic sequencer system at Macrogene Company (Seoul, Korea). The sequences were compared with those of the NCBI BLAST GenBank nucleotide sequence databases. Phylogenetic trees were constructed by the neighbor-joining method using MEGA version 5.05 software (Tamura et al., 2011). Bootstrap resembling analysis for 1,000 replicates was performed to estimate the confidence of tree topologies.

Nucleotide sequence accession numbers: The nucleotide sequences reported in this work have been deposited in the EMBL Nucleotide Sequence Database. The accession numbers are represented in table 5.

Statistics: All experiments were conducted in triplicates. Results were evaluated for statistical significance using ANOVA.


Physico-chemical parameters of the collected water samples: The physicochemical properties of the collected water samples are reported in table 1. At the time of sampling, the temperature was 10.6°C and pH 7.89. The salinity of the sample, as determined in situ, was 224.70 g/L (22,47% (w/v)). Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions (table 1). SO4-2 and Mg+2 was present in much smaller amounts compared to Na +and Cl- concentration. Low levels of calcium, potassium and bicarbonate were also detected, often at less than 1 g/L.

Characterization of isolates. Morphological and biochemical characteristic feature of halophilic bacterial isolates: Among 52 strains isolated from water of Chott Tinsilt, seven distinct bacteria (A1, A2, A3, A4, B1, B4 and B5) were chosen for further characterization (table 2). The colour of the isolates varied from beige, pale yellow, yellowish and orange. The bacterial isolates A1, A2, A4, B1 and B5 were rod shaped and gram negative (except B5), whereas A3 and B4 were cocci and gram positive. All strains were oxidase and catalase positive except for B1. Nitrate reductase and urease activities were observed in all the bacterial isolates, except B4. All the bacterial isolates were negative for H2S formation. B5 was the only strain positive for mannitol fermentation (table 2).

We isolated halophilic bacteria on growth medium with NaCl supplementation at pH 7 and temperature of 30°C. We studied the effect of NaCl, temperature and pH on the growth of bacterial isolates. All the isolates exhibited growth only in the presence of NaCl indicating that these strains are halophilic. The optimum growth of isolates A3 and B1 was observed in the presence of 10% NaCl, whereas it was 15% NaCl for A1, A2 and B5. A4 and B4 showed optimum growth in the presence of 20% and 25% NaCl respectively. A4, B4 and B5 strains can tolerate up to 35% NaCl.

The isolate B1 showed growth in medium supplemented with 10% NaCl and pH range of 7–10. The optimum pH for the growth B1 was 9 and they did not show any detectable growth at or below pH 6 (table 2), which indicates the alkaliphilic nature of B1 isolate. The bacterial isolates A1, A2 and A4 exhibited growth in the range of pH 6–10, while A3 and B4 did not show any growth at pH greater than 8. The optimum pH for growth of all strains (except B1) was pH 7.0 (table 2). These results indicate that A1, A2, A3, A4, B4 and B5 are neutrophilic in nature. All the bacterial isolates exhibited optimal growth at 30°C and no detectable growth at 55°C. Also, detectable growth of isolates A1, A2 and A4 was observed at 4°C. However, none of the bacterial strains could grow below 4°C and above 50°C (table 2).

Screening of the halophilic enzymes: To characterize the diversity of halophiles able to produce hydrolytic enzymes among the population of microorganisms inhabiting the hypersaline habitats of East Algeria (Chott Tinsilt), a screening was performed. As described in Materials and Methods, samples were plated on solid media containing 10%-25% (w/v) of total salts and different substrates for the detection of amylase, protease, lipase and DNAse activities. However, coagulase activity was determined in liquid medium using milk as substrate (figure 3). Distributions of hydrolytic activity among the isolates are summarized in table 4.

From the seven bacterial isolates, four strains A1, A2, A4 and B5 showed combined hydrolytic activities. They were positive for gelatinase, lipase and coagulase. A3 strain showed gelatinase and lipase activities. DNAse activities were detected with A1, A4, B1 and B5 isolates. B4 presented lipase and coagulase activity. Surprisingly, no amylase activity was detected among all the isolates.

Screening for biosurfactant producing isolates: Oil spread assay: The results showed that all the strains could produce notable (>4 cm diameter) oil expelling circles (ranging from 4.11 cm to 4.67 cm). The average diameter for strain B5 was 4.67 cm, significantly (P < 0.05) higher than for the other strains.

Surface tension and emulsification index (E24): The assimilation of hydrocarbons as the sole sources of carbon by the isolate strains led to the production of biosurfactants indicated by the emulsification index and the lowering of the surface tension of cell-free supernatant. Based on rapid growth on media containing diesel oil as sole carbon source, the seven isolates were tested for biosurfactant production and emulsification activity. The obtained values of the surface tension measurements as well as the emulsification index (E24) are shown in table 3. The highest reduction of surface tension was achieved with B5 and A3 isolates with values of 25.3 mN m−1 and 28.1 mN m−1 respectively. The emulsifying capacity evaluated by the E24 emulsification index was highest in the culture of isolate B4 (78%), B5 (77%) and A3 (76%) as shown in table 3 and figure 2. These emulsions were stable even after 4 months. The bacteria with emulsification indices higher than 50 % and/or reduction in the surface tension (under 30 mN/m) have been defined as potential biosurfactant producers. Based on surface tension and the E24 index results, isolates B5, B4, A3 and A4 are the best candidates for biosurfactant production. It is important to note that, strains B4 and A4 produce biosurfactant in medium containing respectively 25% and 20% (w/v) NaCl.

Stability of biosurfactant activities: The applicability of biosurfactants in several biotechnological fields depends on their stability at different environmental conditions (temperatures, pH and NaCl). For this study, the strain B4 appear very interesting (It can produce biosurfactant at 25 % NaCl) and was choosen for futher analysis for biosurfactant stability. The effects of temperature and pH on the biosurfactant production by the strain B4 are shown in figure 4.

biosurfactant in medium containing respectively 25% and 20% (w/v) NaCl.

Stability of biosurfactant activities: The applicability of biosurfactants in several biotechnological fields depends on their stability at different environmental conditions (temperatures, pH and NaCl). For this study, the strain B4 appear very interesting (It can produce biosurfactant at 25 % NaCl) and was chosen for further analysis for biosurfactant stability. The effects of temperature and pH on the biosurfactant production by the strain B4 are shown in figure 4. The biosurfactant produced by this strain was shown to be thermostable giving an E-24 Index value greater than 78% (figure 4A). Heating of the biosurfactant to 100 °C caused no significant effect on the biosurfactant performance. Therefore, the surface activity of the crude biosurfactant supernatant remained relatively stable to pH changes between pH 6 and 11. At pH 11, the value of E24 showed almost 76% activity, whereas below pH 6 the activity was decreased up to 40% (figure 4A). The decreases of the emulsification activity by decreasing the pH value from basic to an acidic region; may be due to partial precipitation of the biosurfactant. This result indicated that biosurfactant produced by strain B4 show higher stability at alkaline than in acidic conditions.

Molecular identification and phylogenies of potential isolates: To identify halophilic bacterial isolates, the 16S rDNA gene was amplified using gene-specific primers. A PCR product of  1.3 kb was detected in all the seven isolates. The 16S rDNA amplicons of each bacterial isolate was sequenced on both strands using 27F and 1492R primers. The complete nucleotide sequence of 1336,1374, 1377,1313, 1305,1308 and 1273 bp sequences were obtained from A1, A2, A3, A4, B1, B4 and B5 isolates respectively, and subjected to BLAST analysis. The 16S rDNA sequence analysis showed that the isolated strains belong to the genera Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus as shown in table 5. The halophilic isolates A2 and A4 showed 97% similarity with the Halomonas variabilis strain GSP3 (accession no. AY505527) and the Halomonas sp. M59 (accession no. AM229319)respectively. As for A1, it showed 96% similarity with the Halomonas venusta strain GSP24 (accession no. AY553074). B1 and B4 showed for their part 96% similarity with the Salinivibrio costicola subsp. alcaliphilus strain 18AG DSM4743 (accession no. NR_042255) and the Planococcus citreus (accession no. JX122551), respectively.  The bacterial isolate B5 showed 98% sequence similarity with the Halobacillus trueperi (accession no. HG931926), As for A3, it showed only 95% similarity with the Staphylococcus arlettae (accession no. KR047785). The 16S rDNA nucleotide sequences of all the seven halophilic bacterial strains have been submitted to the NCBI GenBank database under the accession number presented in table 5. The phylogenetic association of the isolates is shown in figure 5.


The physicochemical properties of the collected water samples indicated that this water was relatively neutral (pH 7.89) similar to the Dead Sea and the Great Salt Lake (USA) and in contrast to the more basic lakes such as Lake Wadi Natrun (Egypt) (pH 11) and El Golea Salt Lake (Algeria) (pH 9). The salinity of the sample was 224.70 g/L (22,47% (w/v). This range of salinity (20-30%) for Chott Tinsilt is comparable to a number of well characterized hypersaline ecosystems including both natural and man-made habitats, such as the Great Salt Lake (USA) and solar salterns of Puerto Rico. Thus, Chott Tinsilt is a hypersaline environment, i.e. environments with salt concentrations well above that of seawater. Chemical analysis of water sample indicated that Na +and Cl- were the most abundant ions, as in most hypersaline ecosystems (with some exceptions such as the Dead Sea). These chemical water characteristics were consistent with the previously reported data in other hypersaline ecosystems (DasSarma and Arora, 2001Oren, 2002Hacěne et al., 2004). Among 52 strains isolated from this Chott, seven distinct bacteria (A1, A2, A3, A4, B1, B4 and B5) were chosen for phenotypique, genotypique and phylogenetique characterization.

The 16S rDNA sequence analysis showed that the isolated strains belong to the genera Halomonas, Staphylococcus, Salinivibrio, Planococcus and Halobacillus. Genera obtained in the present study are commonly occurring in various saline habitats across the globe.  Staphylococci have the ability to grow in a wide range of salt concentrations (Graham and Wilkinson, 1992Morikawa et al., 2009; Roohi et al., 2014). For example, in Pakistan, Staphylococcus strains were isolated from various salt samples during the study conducted by Roohi et al. (2014) and these results agreed with previous reports. Halomonas, halophilic and/or halotolerant Gram-negative bacteria are typically found in saline environments (Kim et al., 2013). The presence of Planococcus and Halobacillus has been reported in studies about hypersaline lakes; like La Sal del Rey (USA) (Phillips et al., 2012) and Great Salt Lake (Spring et al., 1996), respectively. The Salinivibrio costicola was a representative model for studies on osmoregulatory and other physiological mechanisms of moderately halophilic bacteria (Oren, 2006).

However, it is interesting to note that all strains shared less than 98.7% identity (the usual species cut-off proposed by Yarza et al. (2014) with their closest phylogenetic relative, suggesting that they could be considered as new species. Phenotypic, genetic and phylogenetic analyses have been suggested for the complete identification of these strains. Theses bacterial strains were tested for the production of industrially important enzymes (Amylase, protease, lipase, DNAse and coagulase). These isolates are good candidates as sources of novel enzymes with biotechnological potential as they can be used in different industrial processes at high salt concentration (up to 25% NaCl for B4). Prominent amylase, lipase, protease and DNAase activities have been reported from different hypersaline environments across the globe; e.g., Spain (Sánchez‐Porro et al., 2003), Iran (Rohban et al., 2009), Tunisia (Baati et al., 2010) and India (Gupta et al., 2016). However, to the best of our knowledge, the coagulase activity has never been detected in extreme halophilic bacteria. Isolation and characterization of crude enzymes (especially coagulase) to investigate their properties and stability are in progress.

The finding of novel enzymes with optimal activities at various ranges of salt concentrations is of great importance. Besides being intrinsically stable and active at high salt concentrations, halophilic and halotolerant enzymes offer great opportunities in biotechnological applications, such as environmental bioremediation (marine, oilfiel) and food processing. The bacterial isolates were also characterized for production of biosurfactants by oil-spread assay, measurement of surface tension and emulsification index (E24). There are few reports on biosurfactant producers in hypersaline environments and in recent years, there has been a greater increase in interest and importance in halophilic bacteria for biomolecules (Donio et al., 2013Sarafin et al., 2014). Halophiles, which have a unique lipid composition, may have an important role to play as surface-active agents. The archae bacterial ether-linked phytanyl membrane lipid of the extremely halophilic bacteria has been shown to have surfactant properties (Post and Collins, 1982). Yakimov et al. (1995) reported the production of biosurfactant by a halotolerant Bacillus licheniformis strain BAS 50 which was able to produce a lipopeptide surfactant when cultured at salinities up to 13% NaCl. From solar salt, Halomonas sp. BS4 and Kocuria marina BS-15 were found to be able to produce biosurfactant when cultured at salinities of 8% and 10% NaCl respectively (Donio et al., 2013Sarafin et al., 2014). In the present work, strains B4 and A4 produce biosurfactant in medium containing respectively 25% and 20% NaCl. To our knowledge, this is the first report on biosurfactant production by bacteria under such salt concentration. Biosurfactants have a wide variety of industrial and environmental applications (Akbari et al., 2018) but their applicability depends on their stability at different environmental conditions. The strain B4 which can produce biosurfactant at 25% NaCl showed good stability in alkaline pH and at a temperature range of 30°C-100°C. Due to the enormous utilization of biosurfactant in detergent manufacture the choice of alkaline biosurfactant is researched (Elazzazy et al., 2015). On the other hand, the interesting finding was the thermostability of the produced biosurfactant even after heat treatment (100°C for 30 min) which suggests the use of this biosurfactant in industries where heating is of a paramount importance (Khopade et al., 2012). To date, more attention has been focused on biosurfactant producing bacteria under extreme conditions for industrial and commercial usefulness. In fact, the biosurfactant produce by strain B4 have promising usefulness in pharmaceutical, cosmetics and food industries and for bioremediation in marine environment and Microbial enhanced oil recovery (MEOR) where the salinity, temperature and pH are high.


This is the first study on the culturable halophilic bacteria community inhabiting Chott Tinsilt in Eastern Algeria. Different genera of halotolerant bacteria with different phylogeneticaly characteristics have been isolated from this Chott. Culturing of bacteria and their molecular analysis provides an opportunity to have a wide range of cultured microorganisms from extreme habitats like hypersaline environments. Enzymes produced by halophilic bacteria show interesting properties like their ability to remain functional in extreme conditions, such as high temperatures, wide range of pH, and high salt concentrations. These enzymes have great economical potential in industrial, agricultural, chemical, pharmaceutical, and biotechnological applications.  Thus, the halophiles isolated from Chott Tinsilt offer an important potential for application in microbial and enzyme biotechnology. In addition, these halo bacterial biosurfactants producers isolated from this Chott will help to develop more valuable eco-friendly products to the pharmacological and food industries and will be usefulness for bioremediation in marine environment and petroleum industry.


Our thanks to Professor Abdelhamid Zoubir for proofreading the English composition of the present paper.


The authors declare that they have no conflict of interest.

Akbari, S., N. H. Abdurahman, R. M. Yunus, F. Fayaz and O. R. Alara, 2018. Biosurfactants—a new frontier for social and environmental safety: A mini review. Biotechnology research innovation, 2(1): 81-90.
Association, A. P. H., A. W. W. Association, W. P. C. Federation and W. E. Federation, 1920. Standard methods for the examination of water and wastewater. American Public Health Association.
Baati, H., R. Amdouni, N. Gharsallah, A. Sghir and E. Ammar, 2010. Isolation and characterization of moderately halophilic bacteria from tunisian solar saltern. Current microbiology, 60(3): 157-161.
Berridge, N., 1952. Some observations on the determination of the activity of rennet. Analyst, 77(911): 57b-62.
DasSarma, S. and P. Arora, 2001. Halophiles. Encyclopedia of life sciences. Nature publishishing group: 1-9.
Donio, M. B. S., F. A. Ronica, V. T. Viji, S. Velmurugan, J. S. C. A. Jenifer, M. Michaelbabu, P. Dhar and T. Citarasu, 2013. Halomonas sp. Bs4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus, 2(1): 149.
El-Sersy, N. A., 2012. Plackett-burman design to optimize biosurfactant production by marine Bacillus subtilis n10. Roman biotechnol lett, 17(2): 7049-7064.
Elazzazy, A. M., T. Abdelmoneim and O. Almaghrabi, 2015. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi journal of biological Sciences, 22(4): 466-475.
Graham, J. E. and B. Wilkinson, 1992. Staphylococcus aureus osmoregulation: Roles for choline, glycine betaine, proline, and taurine. Journal of bacteriology, 174(8): 2711-2716.
Gupta, S., P. Sharma, K. Dev and A. Sourirajan, 2016. Halophilic bacteria of lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochemistry research international, 1: 1-10.
Gupta, S., P. Sharma, K. Dev, M. Srivastava and A. Sourirajan, 2015. A diverse group of halophilic bacteria exist in lunsu, a natural salt water body of Himachal Pradesh, India. SpringerPlus 4(1): 274.
Hacěne, H., F. Rafa, N. Chebhouni, S. Boutaiba, T. Bhatnagar, J. C. Baratti and B. Ollivier, 2004. Biodiversity of prokaryotic microflora in el golea salt lake, Algerian Sahara. Journal of arid environments, 58(3): 273-284.
Jeffries, C. D., D. F. Holtman and D. G. Guse, 1957. Rapid method for determining the activity of microorgan-isms on nucleic acids. Journal of bacteriology, 73(4): 590.
Karan, R. and S. Khare, 2010. Purification and characterization of a solvent‐stable protease from Geomicrobium sp. Emb2. Environmental technology, 31(10): 1061-1072.
Khopade, A., R. Biao, X. Liu, K. Mahadik, L. Zhang and C. Kokare, 2012. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, 3: 198-204.
Kim, K. K., J.-S. Lee and D. A. Stevens, 2013. Microbiology and epidemiology of Halomonas species. Future microbiology, 8(12): 1559-1573.
Lane, D., 1991. 16s/23s rRNA sequencing in nucleic acid techniques in bacterial systematics. Stackebrandt e., editor;, and goodfellow m., editor. Chichester, UK: John Wiley & Sons.
Morikawa, K., R. L. Ohniwa, T. Ohta, Y. Tanaka, K. Takeyasu and T. Msadek, 2009. Adaptation beyond the stress response: Cell structure dynamics and population heterogeneity in Staphylococcus aureus. Microbes environments, 25: 75-82.
Morikawa, M., Y. Hirata and T. J. B. e. B. A.-M. Imanaka, 2000. A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica et biophysica acta, 1488(3): 211-218.
Oren, A., 2002. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. Journal of industrial microbiology biotechnology, 28(1): 56-63.
Oren, A., 2006. Halophilic microorganisms and their environments. Springer science & business media.
Oren, A., R. Vreeland and L. Hochstein, 1993. Ecology of extremely halophilic microorganisms. The biology of halophilic bacteria, 2(1): 1-8.
Phillips, K., F. Zaidan, O. R. Elizondo and K. L. Lowe, 2012. Phenotypic characterization and 16s rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, la sal del rey, in extreme south texas (USA). Aquatic biosystems, 8(1): 1-5.
Post, F. and N. Collins, 1982. A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive 1. Journal of food biochemistry, 6(1): 25-38.
Rocha, C., F. San-Blas, G. San-Blas and L. Vierma, 1992. Biosurfactant production by two isolates of Pseudomonas aeruginosa. World Journal of microbiology biotechnology, 8(2): 125-128.
Rohban, R., M. A. Amoozegar and A. Ventosa, 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from howz soltan lake, Iran. Journal of industrial microbiology biotechnology, 36(3): 333-340.
Roohi, A., I. Ahmed, N. Khalid, M. Iqbal and M. Jamil, 2014. Isolation and phylogenetic identification of halotolerant/halophilic bacteria from the salt mines of Karak, Pakistan. International journal of agricultural and biology, 16: 564-570.
Sambrook, J., E. F. Fritsch and T. Maniatis, 1989. Molecular cloning: A laboratory manual, 2nd edn. Cold spring harbor laboratory, cold spring harbor, New York.
Sánchez‐Porro, C., S. Martin, E. Mellado and A. Ventosa, 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of applied microbiology, 94(2): 295-300.
Sarafin, Y., M. B. S. Donio, S. Velmurugan, M. Michaelbabu and T. Citarasu, 2014. Kocuria marina bs-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi journal of biological sciences, 21(6): 511-519.
Smibert, R., 1994. Phenotypic characterization. In methods for general and molecular bacteriology. American society for microbiology: 611-651.
Solomon, E. and K. J. I. Viswalingam, 2013. Isolation, characterization of halotolerant bacteria and its biotechnological potentials. International journal scientific research paper publication sites, 4: 1-7.
Spring, S., W. Ludwig, M. Marquez, A. Ventosa and K.-H. Schleifer, 1996. Halobacillus gen. Nov., with descriptions of Halobacillus litoralis sp. Nov. and Halobacillus trueperi sp. Nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. Nov. International journal of systematic evolutionary microbiology, 46(2): 492-496.
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, 2011. Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology evolution, 28(10): 2731-2739.
Yakimov, M. M., K. N. Timmis, V. Wray and H. L. Fredrickson, 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis bas50. Applied and environmental microbiology, 61(5): 1706-1713.
Yarza, P., P. Yilmaz, E. Pruesse, F. O. Glöckner, W. Ludwig, K.-H. Schleifer, W. B. Whitman, J. Euzéby, R. Amann and R. Rosselló-Móra, 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16s rRNA gene sequences. Nature reviews microbiology, 12(9): 635-645

Full Text:



Abstract Views or PDF Downloads

best free website hit counter


  • There are currently no refbacks.

Copyright (c) 2020 Scientific Platform

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Print ISSN: 2522-6746 ,  Online ISSN: 2522-6754